Eulerian Paths and Cycles

What is a Eulerian Path

- Given an graph.
- Find a path which uses every edge exactly once.
- This path is called an Eulerian Path.
- If the path begins and ends at the same vertex, it is called a Eulerian Cycle.

Where did all start: Koningsberg

Koningsberg

Find a route which crosses each bridge exactly once?

Koningsberg Graph

This graph represents the Koningsburg bridges

When do Eulerian Paths and Cycles exist?

- Euler's solution
- An Eulerian cycle exists if and only if it is connected and every node has 'even degree'.
- An Eulerian path exists if and only if it is connected and every node except two has even degree.
- In the Eulerian path the 2 nodes with odd degree have to be the start and end vertices

Proof: a Eulerian graph must have all vertices of even degree

- Let C be an Eulerian cycle of graph G, which starts and ends at vertex u.
- Each time a vertex is included in the cycle C, two edges connected to that vertex are used up.
- Every edge in G is included in the cycle. So every vertex other than u must have even degree.
- The tour starts and ends at u, so it must also have even degree.

Proof: a graph with all vertices of even degree must be Eulerian

- Assume the opposite: G is a non-eulerian graph with all vertices of even degree.
- G must contain a cycle. Let C be the largest possible cycle in the graph.
- Because of our assumption, C must have missed out some of the graph G , call this D.
- C is Eulerian, so has no vertices of odd degree. D therefore also has no vertices of odd degree.
- D must have some cycle E which shares a common vertex with C
- Combination of C and E therefore makes a cycle larger than C , which violates our assumption in (2). Contradiction.

Examples

Eulerian Cycle:

Eulerian Path:

And Koningsburg?

- No Eulerian Path or cycle!

Finding Eulerian Cycles

- Start off with a node
- Find a cycle containing that node
- Find a node along that path which has an edge that has not been used
- Find a cycle starting at this node witch uses the unused edge
- Splice this new cycle into the existing cycle
- Continue in this way until no nodes exist with unused edges
- Since the graph is connected this implies we have found a Eulerian Cycle

Formal Algorithm

- Pick a starting node and recurse on that node. At each step:
- If the node has no neighbors, then append the node to the circuit and return
- If the node has a neighbor, then make a list of the neighbors and process them until the node has no more neighbors
- To process a neighbour, delete the edge between the current node and its neighbor, recurse on the neighbor
- After processing all neighbours append current node to the circuit.

Pseudo-Code

- find_circuit (node i)
if node i has no neighbors
circuit [circuitpos] = node i
circuitpos++
else
while (node i has neighbors)
pick a neighbor j of node i
delete_edges (node j, node i)
find_circuit (node j)
circuit [circuitpos] = node i
circuitpos++

Execution Example

Stack:

- Location:
-Gircuit:

Execution Example

Stack:

- Location:
-Gircuit:

Execution Example

Stack:

- Location: 1
-Cireuit:

Execution Example

Stack:

- Location: 1
-Cireuit:

Execution Example

Stack: 1

- Location: 4
-Girenit:

Execution Example

Stack: 14

- Location: 2
-Gircuit:

Execution Example

Stack: 142

- Location: 5

Circuit:

Execution Example

Stack: 1425

- Location: 1
-Gircuit:

Execution Example

Stack: 142

- Location: 5
-Gircuit:-1

Execution Example

Stack: 1425

- Location: 6
-Gircuit:-1

Execution Example

Stack: 14256

- Location: 2
-Gircuit:-1

Execution Example

Stack: 142562
Location: 7
-Giresit:-1

Execution Example

Stack: 1425627
Location: 3
-Gircuit:-1

Execution Example

Stack: 14256273

- Location: 4
-Gircuit:-1

Execution Example

Stack: 142562734
Location: 6
-Gircuit:-1

Execution Example

Stack: 1425627346
Location: 7
-Giresit:-1

Execution Example

Stack: 14256273467
Location: 5

Execution Example

Stack: 1425627346
Location: 7
-Circuit: 15

Execution Example

Stack: 142562734
Location: 6
-Gircuit: 15 -7

Execution Example

(2)

Stack: 14256273

- Location: 4

Cirkuit:-1576

Execution Example

Stack: 1425627
Location: 3
-Circuit: 15764

Execution Example

Stack: 142562
Location: 7
-Gircuit:-15-76_4.3

Execution Example

Stack: 14256

- Location: 2
-Gircuit:1-5-76.4_3.7

Execution Example

Stack: 1425
Location: 6
-Gircuit:-15-76.4_372

Execution Example

Stack: 142
Location: 5
-Gircuit:1-576.4-3_726

Execution Example

Stack: 14

- Location: 2

Gircuit: 1-5-76.4.3.726.5

Execution Example

(2)

Stack: 1

- Location: 4
-Gircuit: 1-5-76.4.3.726.52

Execution Example

(2)

Stack:

- Location: 1
-Girenit: 1-5_76.4.3.726.5_2.4

Execution Example

(2)

Stack:
Location:
-Gircuit: 1-5-76-4_372.6.5-24-1

Analysis

- To find an Eulerian path, find one of the nodes which has odd degree (or any node if there are no nodes with odd degree) and call find_circuit with it.
This algorithm runs in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ time, where m is the number of edges and n is the number of nodes, if you store the graph in adjacency list form.
\qquad

