
Eulerian Paths and 
Cycles



What is a Eulerian Path

 Given an graph.

 Find a path which uses every edge exactly 

once.

 This path is called an Eulerian Path.

 If the path begins and ends at the same 

vertex, it is called a Eulerian Cycle. 



Where did all start: Koningsberg



Koningsberg
Find a route which crosses each bridge exactly once?



Koningsberg Graph

This graph 

represents the 

Koningsburg bridges



When do Eulerian Paths and Cycles 
exist?

 Euler’s solution

 An Eulerian cycle exists if and only if it is 
connected and every node has ‘even degree’.

 An Eulerian path exists if and only if it is 
connected and every node except two has even 
degree.

 In the Eulerian path the 2 nodes with odd degree 
have to be the start and end vertices



Proof: a Eulerian graph must have all 
vertices of even degree

 Let C be an Eulerian cycle of graph G, which starts and 
ends at vertex u.

 Each time a vertex is included in the cycle C, two edges

connected to that vertex are used up.

 Every edge in G is included in the cycle. So every vertex

other than u must have even degree.

 The tour starts and ends at u, so it must also have even

degree.



Proof: a graph with all vertices of even 
degree must be Eulerian

 Assume the opposite: G is a non-eulerian graph with all

vertices of even degree.

 G must contain a cycle. Let C be the largest possible

cycle in the graph.

 Because of our assumption, C must have missed out some

of the graph G, call this D.

 C is Eulerian, so has no vertices of odd degree. D

therefore also has no vertices of odd degree.

 D must have some cycle E which shares a common vertex 
with C 

 Combination of C and E therefore makes a cycle larger than 
C, which violates our assumption in (2). Contradiction.



Examples

Eulerian Cycle:

Eulerian Path:



And Koningsburg?

 No Eulerian Path or cycle!



Finding Eulerian Cycles 

 Start off with a node

 Find a cycle containing that node

 Find a node along that path which has an edge that has not 
been used

 Find a cycle starting at this node witch uses the unused edge

 Splice this new cycle into the existing cycle

 Continue in this way until no nodes exist with unused edges

 Since the graph is connected this implies we have found a 
Eulerian Cycle



Formal Algorithm

 Pick a starting node and recurse on that node. At 
each step: 
 If the node has no neighbors, then append the node to the 

circuit and return

 If the node has a neighbor, then make a list of the 
neighbors and process them until the node has no more 
neighbors

 To process a neighbour, delete the edge between the 
current node and its neighbor, recurse on the neighbor

 After processing all neighbours append current node to 
the circuit.



Pseudo-Code
 find_circuit (node i)

if node i has no neighbors

circuit [circuitpos] = node i

circuitpos++

else

while (node i has neighbors)

pick a neighbor j of node i

delete_edges (node j, node i)

find_circuit (node j)

circuit [circuitpos] = node i

circuitpos++



Execution Example
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Execution Example
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Execution Example
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Execution Example
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Execution Example
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Execution Example
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Execution Example
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Execution Example

 Stack: 1 4 2 5 6 2 7
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Execution Example
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Execution Example
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Execution Example
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Execution Example

 Stack: 1 4 2 5 6 2 7 3 4 6
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Execution Example

 Stack: 1 4 2 5 6 2 7 3 4
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Execution Example

 Stack: 1 4 2 5 6 2 7 3
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Execution Example

 Stack: 1 4 2 5 6 2 7
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Execution Example

 Stack: 1 4 2 5 6 2
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Execution Example

 Stack: 1 4 2 5 6
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Execution Example

 Stack: 1 4 2 5
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Execution Example

 Stack: 1 4 2
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Execution Example

 Stack: 1 4
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Execution Example
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Execution Example

 Stack: 
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 Circuit: 1 5 7 6 4 3 7 2 6 5 2 4
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Execution Example

 Stack: 

 Location: 

 Circuit: 1 5 7 6 4 3 7 2 6 5 2 4 1
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Analysis

 To find an Eulerian path, find one of the 

nodes which has odd degree (or any node 

if there are no nodes with odd degree) and 

call find_circuit with it.

 This algorithm runs in O(m + n) time, where 

m is the number of edges and n is the 

number of nodes, if you store the graph in 

adjacency list form.




